III B.Sc MATHEMATICS

			SEMESTE	RV					
	Core-09	U21MA509	Linear Algebra	6	3	2 5	7 5	100	4
	Core-10	U21MA510	Real Analysis	6	3	2 5	7 5	100	4
	Core-11	U21MA511	Statics	6	3	2 5	7 5	100	4
	Core -12	U21MA512	Numerical Methods	4	3	2 5	7 5	100	4
	Core Lab	U21MA5P1	MATLAB	2	3	40	60	100	2
Part-	Core Elective –	U21MA5E1 A	LPP	1	3	25	7	100	1
III	L	B U21MA5E1 C	Stochastic Process Combinatorial Mathematics	4	5	23	5	100	+
	Institutio nal Training/ Minor Project	U21MA5IT	Institutional Training/ Minor Project		-	40	6 0	100	2
Part- IV	Skill Enhancem ent: I	U21SE5S1	Women Studies	2	2	-	50	5 0	2
Part- V	Self Study Course	Gene	ral Studies	-	-	-	-	Compl etion	1
	S	emester – V 7	otal	30				750	27
			Semester V	71					
	Core-13	U21MA613	Complex Analysis	6	3	25	7 5	100	4
	Core-14	U21MA614	Dynamics	5	3	25	7	100	4
	Core-15	U21MA615	Graph Theory	6	3	25	7 5	100	4
Part-	Core Elective -2	U21MA6E2A U21MA6E2B	Number Theory Discrete	5	3	25	7 5	100	4
III		U21MA6E2C	Mathematics Fuzzy Sets						

III B.Sc MATHEMATICS

		TOTAL						4200	156
Sei	mester – VI	Fotal		30				700	29
Part- V	Spoken 7 online) /	Tutorial (Self S MOOC (onlin	tudy Course - e)	-	-	-	-	Compl etion	2
IV	Extra Department Course open Elective - Self Study Course	To be selected courses offere departments	d from the ed by other	-	3	-	100	100	3
Part-	Skill Enhancem ent :II	U21MA6S2	Mathematic al Reasoning	2	2	-	5 0	5 0	2
	Comprehe nsion – 2(Self Study Course- Online Examinatio n)	U21MA6C3	Comprehension in Mathematics-3	_	1	0	5 0	5 0	1
	Major Group Project & Viva voce	U21MA6MP	Major - Group Project & Viva Voce	6	3	40	6 0	100	5

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credit
	Type	Code	Title	(L)	(T)	(P)	(C)
Part - III	Core- 09	U21MA509	Linear Algebra	85	5	-	4

Contact hours per semester: 90Contact hours per week: 6

Year	Semester	Internal Marks	External Marks	Total Marks
Third	Fifth	25	75	100

Preamble

The course provides basic and thorough knowledge in matrix algebra and understand the concept ofvector spaces, Eigen values and Eigen vectors and Cayley Hamilton theorem.

Course Outcomes (COs)

On successful completion of the course, the learners should be able to

CO No.	Course Outcome	Knowledge Level (RBT)
CO1	recall the basic concepts of algebra and vector spaces	K1
CO2	understand the definitions of vector spaces and basic concepts of matrices	K2
CO3	apply the theorems of vector spaces and Cayley Hamilton theorem in problems	К3
CO4	analyze the theorems in matrix algebra and in vector spaces	K4
CO5	evaluate the problems in vector spaces and in Cayley Hamilton theorem	K5

CO-PO Mapping	(Course	Articulation	Matrix)
---------------	---------	--------------	---------

POs						PO6	PO7
	PO1	PO2	PO3	PO4	PO5		
COs							
CO1	3	2	3	2	2	2	-
CO2	2	3	2	3	1	2	2
CO3	3	2	2	2	2	2	2
CO4	3	3	2	1	2	-	3
CO5	2	2	1	2	2	2	3
Total Contribution of COs to POs	13	12	12	10	9	8	10
Weighted Percentage of COs Contribution to POs	86.67	80	80	66.67	60	53.33	66.67

Low 1; Medium 2; High 3; Not correlated -

COURSE CONTENT

Unit I: Vector Spaces

Definition and examples – elementary properties – subspaces – linear transformation – fundamental theorem of homomorphism

Chapter 5 – Sections: 5.1 -5.3

Unit II: Basis and Dimension

Span of a set – linear dependence and independence – basis and dimension – theorems

Chapter 5 – Sections: 5.4 -5.6

Unit III: Linear Transformation

Rank and nullity Theorem – matrix of a linear transformation – Problems

Chapter 5 – Sections: 5.7 -5.8

Unit IV: Inner Product Space

Definitions and examples of inner product space – orthogonality – orthogonal complement – Gram Schmidt orthogonalization.

Chapter 6 – Sections: 6.1 -6.3

Unit V: Matrices

Cayley Hamilton Theorem and its Applications - Eigen values and Eigen vectors – Properties and problems.

Chapter 7 – Sections: 7.7 -7.8

(L - 17 + T - 1Hours)

(L - 17 + T - 1Hours)

(L - 17 + T - 1 Hours)

(L - 17 + T - 1Hours)

(L - 17 + T - 1 Hours)

Tutorial Section:

Unit	Торіс	Hours
Ι	Vector Spaces	1
II	Basic theorems in vector spaces	1
III	Linearly independent and dependent	1
IV	Theorems	1
V	Matrix basic concept, Cayley Hamilton Theorem	1

Text Book:

1. S. Arumugam & Issac – Modern Algebra

Reference Books:

- 1. Sharma .J.N and Vashistha .A.R, 1981, Linear Algebra, Krishna Prakash Nandir.
- 2. S. Kumaresan, 2000, Linar Algebra: A Geometric Approach, PHI Learning.

- 1. <u>WhatVS.pdf (toronto.edu)</u>
- 2. <u>NPTEL</u>
- 3. <u>Vector Space -- from Wolfram MathWorld</u>

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credit
	Type	Code	Title	(L)	(T)	(P)	(C)
Part - III	Core- 10	U21MA510	Real Analysis	85	5	-	4

Contact hours per semester: 90 Contact hours per week: 6

Year	Semester	Internal Marks	External Marks	Total Marks	
Third	Fifth	25	75	100	

Preamble

This course provides the knowledge of metric spaces, the concepts of continuity, connectedness and compactness.

Course Outcomes (COs)

On successful completion of the course, the learners should be able to

СО		Knowledge
No	Course Outcome	Level
110.		(RBT)
COL	remember and understand the basic concepts of Metric Spaces,	K1, K2
COI	completeness, continuity, connectedness and compactness	
	examine the properties of open sets and closed sets,	K3
CO2	characterization of completeness, continuity, connectedness	
	and compactness	
CO3	analyze Interior and closure, uniform continuity connected	K4
005	subsets and compact subsets of R categorize completeness	
CO4	determine dense sets, discontinuities, equivalent	K5
04	characterization for compactness, connectedness and continuity	
CO5	predict metric space, completeness, continuity & compactness	K6

POs						PO6	PO7
	PO1	PO2	PO3	PO4	PO5		
COs							
CO1	2	3	2	2	3	1	3
CO2	1	2	2	1	2	1	2
CO3	2	3	1	2	3	-	3
CO4	1	2	2	1	2	1	2
CO5	2	3	1	2	1	2	-
Total Contribution of COs to POs	8	13	8	8	11	5	10
Weighted Percentage of COs Contribution to POs	53.33	86.67	53.33	53.33	73.33	33.33	66.67

CO-PO Mapping (Course Articulation Matrix)

Low 1; Medium 2; High 3; Not correlated -

COURSE CONTENT

Unit I: Countable Sets & Metric Spaces

Countable – Uncountable sets – Metric spaces – Bounded sets – Open ball – open sets – subspaces Chapter 1 - Sections: 1.2 – 1.4 & Chapter 2 - Sections: 2.1 – 2.5

Unit II: Complete Metric Space

Interior of a set – closed set – closure, limit point, dense sets – complete metric space – Cantor's intersection theorem – Baire's category theorem

Chapter 2 - Sections: 2.6 – 2.10 & Chapter 3 - Sections: 3.1 & 3.2

Unit III: Continuous Functions

Continuity of functions – continuity of composition of functions – equivalent conditions for continuity – algebra of continuous functions – homeomorphism – uniform continuity – discontinuities

Chapter 4 – Sections: 4.1 – 4.4

Unit IV: Connected Metric Space (L – 17 + T – 1 Hours)

Connectedness – equivalent conditions – connected subsets of R – connectedness and continuity – continuous image of a connected set is connected – Intermediate mean value theorem.

Chapter 5 – Sections: 5.1 – 5.3

$\left(L-17+T-1 \;Hours\right)$

(L - 17 + T - 1 Hours)

2

(L - 17 + T - 1 Hours)

Unit V: Compact Metric Space

(L - 17 + T - 1 Hours)

Compactness – definition of open cover – compact metric space – Heine Borel Theorem – compactness and continuity – continuous image of a compact set is compact – uniform continuity – continuous function on a compact metric space is uniformly continuous – equivalent forms of compactness.

Chapter 6 – Sections: 6.1 – 6.4

Tutorial Section:

Unit	Торіс	Hours
Ι	Subspaces	1
II	Limit points	1
III	Homeomorphism and uniform continuity	1
IV	Connectedness of continuity	1
V	Equivalent forms of compactness	1

Text Book:

1. S. Arumugam and Issac, 2017, Modern Analysis, New Gamma Publishing House.

Reference Books:

- 1. S. C. Malik, 2017, Principles of Real Analysis, 4th Edition, New Age International (P), Ltd
- 2. Tom M. Apostol, Mathematical Analysis, 2nd Edition, Narosa Phublishing House, New Delhi.

- 1. <u>Basic Real Analysis Course (nptel.ac.in)</u>
- 2. Limit Point -- from Wolfram MathWorld
- 3. <u>Connectedness | Connected Sets, Connectedness in Real Analysis (byjus.com)</u>

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credit
	Type	Code	Title	(L)	(T)	(P)	©
Part III	Core – 11	U21MA511	Statics	85	5	-	4

Contact hours per semester:90

Contact hours per week: 6

Year	Semester	Internal Marks	External Marks	Total Marks
Third	Fifth	25	75	100

Preamble

To provide the basic knowledge of equilibrium of a particle to develop a working knowledge to handle practiced problems

Course Outcomes (Cos)

On successful completion of the course, the learners should be able to

CO No.	Course Outcome	Knowledge Level (RBT)
CO1	understand the concept of forces acting at a point, parallel forces and moments, Equilibrium of three forces acting on a rigid body, Friction, Equilibrium of strings.	K1, K2
CO2	apply parallelogram law of forces, varigon's theorem, three coplanar forces theorem, Laws of friction, equation of the common category to solve problems.	K3
CO3	analyze Lami's theorem, resultant of two unlike, unequal parallel forces, condition of equilibrium of three coplanar parallel forces, equilibrium of a particle, Geometrical properties of common category	K4
CO4	evaluate the problems related with Lami's theorem, parallel forces Equilibrium of three forces acting on a rigid body, friction, common category	K5
CO5	find the solution of a point, parallel forces and moments, friction, Equilibrium of three forces action on a rigid body equilibrium of strings	K6

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
COs							
CO1	2	3	2	2	3	1	3
CO2	1	2	2	1	2	1	2
CO3	2	3	1	2	3	2	3
CO4	1	2	2	1	2	-	2
CO5	2	3	1	2	1	1	-
Total Contribution of COs to POs	8	13	8	8	11	5	10
Weighted Percentage of COs Contribution to POs	53.33	86.67	53.33	53.33	73.33	33.33	66.67

CO – PO Mapping (Course Articulation Matrix

Low 1; Medium 2; High 3; Not correlated -

COURSE CONTENT

Unit I: Forces acting at a point

Forces acting at a point – parallelogram Law of forces – Triangle of forces – Lami's Theorem – Problems.

Chapter 2 -Sections: 1 - 10

Unit II: Parallel forces and moments

Parallel forces and moments - resultant of two parallel forces - resultant of two unlike unequal parallel forces - Varignon"s Theorem - Problems.

Chapter 3 – Sections: 1 – 12

Unit III: Equilibrium of three forces acting on a rigid body (L - 17 + T - 1 Hours)

Equilibrium of three forces acting on a rigid body – three coplanar forces theorem – problems

Chapter 5 – Sections: 1 – 6

Unit IV: Friction

Friction – Laws of friction – angle of friction – equilibrium of a particle (i) on a rough inclined plane (ii) under a force parallel to the plane (iii) under any force - problems

Chapter 7 – Sections: 1 – 12

Unit V: Equilibrium of strings

Equilibrium of strings – equation of the common catenary – tension at any point – Geometrical properties of common catenary - problems.

Chapter 11 – Sections: 1 – 6

(L - 17 + T - 1 Hours)

(L - 17 + T - 1 Hours)

(L - 17 + T - 1 Hours)

(L - 17 + T - 1 Hours)

III B.Sc MATHEMATICS

Tutorial Section:

Unit	Торіс	Hours
Ι	Forces action at a point	1
II	Resultant of parallel forces	1
III	Equilibrium of coplanar forces	1
IV	Friction	1
V	Equilibrium of string	1

Text Books:

1. Venkatraman, M.K. – Statics, Agasthiar Publications, Trichy.

References Books:

- 1. Narayanan.S Statics, S.Chand & Company, New Delhi.
- Duraipandian, P, Laxmi Duraipandian and Muthamizh Jayapragasam- Mechanics, S.Chand & Company

- 1. Forces Acting at a Point And Methods of Force Resolution (mechasource.blogspot.com)
- 2. Parallel Forces (slideshare.net)
- 3. What is friction? (article) | Khan Academy

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credit ©
Part III	Core -12	U21MA512	Numerical Methods	55	5	-	4

Contact hours per Semester: 60 Contact hours per week: 4

Year	Semester	Internal Marks	External Marks	Total Marks
Third	Fifth	25	75	100

Preamble

The purpose of the course is to encourage the students to apply numerical techniques. To enhance computational skills for solving mathematical equations. To train the students to solve the problems in their respective domain.

Course Outcomes (Cos)

On successful completion of the course, the learners should be able to

CO No.	Course Outcome	Knowledge Level (RBT)
CO1	identify the common numerical methods and use them to obtain approximate solutions.	K1
CO2	understand the methods	K2
CO3	apply numerical methods to obtain approximate solutions to mathematical problems and solve the problems of interpolation, numerical integration and ordinary differential equations.	К3
CO4	explain theory of numerical and analyses error obtained in the numerical solution of the problems	K4
CO5	evaluate the accuracy of common numerical methods.	K5

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
C01	3	3	2	2	2	-	2
CO2	3	3	2	1	1	3	-
CO3	3	2	3	3	2	3	3
CO4	2	2	2	3	1	3	2
CO5	2	1	3	3	2	2	3
Total Contribution of COs to POs	13	11	12	12	8	11	10
Weighted Percentage of CO sContribution to POs	86.66	73.33	80	80	53.33	73.33	66.66

CO – PO Mapping (Course Articulation Matrix)

Low 1; Medium 2; High 3; Not correlated -

COURSE CONTENT

Unit I: Solution of Numerical algebraic Equations (L-11 + T -1 Hours)

Bisection method - Newton's method - Criterion of order of convergence of Newton's

method.Regula False method – Gauss elimination – Gauss Jacobi – Gauss Seidal method

Chapter 3 - Sections: 3.2 – 3.7; Chapter 4 - Section: 4.2

Unit II: Finite Difference

First and higher order differences - Forward and backward differences - Properties of Operator -Differences of a polynomial -Factorial Polynomial

Chapter 5 – Sections: 5.2, 5.3, 5.6, 5.10 – 5.12

Unit III: Interpolation

Newton's Forward – backward, Gauss forward – backward interpolation formula – Bessel's formula.

Divided differences – Newton's divided difference formula – Lagrange's interpolation formula.

Chapter 6 – Sections: 6.3, 6.4; Chapter 7 – Sections: 7.3, 7.4, 7.6 & Chapter 8 – Sections: 8.1, 8.3, 8.4

Unit IV: Numerical Differentiation and Integration

Newton's forward and backward differences for differentiation - Derivatives using Bessel's formula -Trapezoidal rule, Simpson's 1/3 rule & 3/8 rule.

Chapter 9 – Sections: 9.2 – 9.4, 9.8 & 9.10

(L-11 + T -1 Hours)

(L-11 + T - 1 Hours)

(L-11 + T - 1 Hours)

Unit V: Difference Equations

(L-11 + T -1 Hours)

 $Definition-order \ and \ degree \ of \ difference \ equation-Linear \ difference \ equation-$

Finding complementary function – particular Integral –simple applications.

Chapter 10 – Sections: 10.2 & 10.3

Text Books:

 Venkatraman .M.L, 1998, Numerical methods in Science and Engineering National Publishing Company V Edition

References Books:

- Kandasamy.P.K. Thilagavathy and K. Gunavathy, 2006, Numerical Methods, S. Chand & Company Ltd. Edn..
- Autar Kaw and Egwwn Enc Kalu, 2011, Numerical methods with Application Abidet. Autokaw.com 2nd Edition.

- 1. Discrete-time Signals and Systems (mit.edu)
- 2. <u>Numerical methods Course (nptel.ac.in)</u>
- 3. Interpolation | Definition, Formula, Methods & Uses (byjus.com)

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutoria l (T)	Practic al (P)	Credit (C)
Part- III	Core Lab	U21MA5 P1	MATLAB	-	-	2	2

Contact hours per semester: 30 Contact hours per week: 2

Year	Semester	Internal Marks	External Marks	Total Marks
Third	Fifth	40	60	100

Preamble

This course provides knowledge about the use of MATLAB in modern computing environments for the purpose of symbolic and numerical problem solving and visualization.

Course Outcomes (COs)

On successful completion of the course, the learners should be able to

CO No.	Course Outcome	Knowledge Level (RBT)
CO1	understand the basic commends of MATLAB to find the addition of two matrices and transpose of a matrix	K1, K2
CO2	apply the concepts in linear algebra to find determinant of matrix and multiplication of matrix	К3
CO3	analyze the specific features to plot a function, polar plot, straight line fit, exponential curve fitting	K4
CO4	determine eigen values and eigen vectors	K5
CO5	compose matrix factorization	K6

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
COs							
C01	3	1	3	2	1	1	3
CO2	3	1	3	2	1	1	3
CO3	1	1	1	2	1	1	2
CO4	3	1	2	2	1	2	-
CO5	3	1	3	2	1	-	2
Total Contribution of COs to POs	13	5	12	10	5	5	10
Weighted Percentage of COs Contribution to POs	86.67	33.33	80	66.67	33.33	33.33	66.67

CO-PO Mapping (Course Articulation Matrix)

Low	1:	Medium	2;	High	3;	Not	Correlated	_
	-,		-,	8	-,		001101000	

COURSE CONTENT

- 1. To find the addition of two matrices
- 2. Transpose of a matrix
- 3. Matrix multiplication
- 4. Finding the determinant of a matrix
- 5. Plotting a function
- 6. Polar plot
- 7. Straight line fit
- 8. Exponential curve fitting
- 9. Finding Eigen values and Eigen vectors of a matrix
- 10. Matrix Factorizations

Text Book:

1. Rudra Pratap, 2003, Getting Started with MATLAB - A Quick Introduction for Scientists and Engineers, Oxford University Press.

Reference Books:

- 1. William John Palm, 2005, Introduction to Matlab 7 for Engineers, McGraw-Hill Professional.
- 2. Dolores M. Etter, David C. Kuncicky, 2004, Introduction to MATLAB 7, Prentice Hall.

- 1. <u>https://m.njit.edu/Undergraduate/Matlab/M111MATLAB2S08/</u>
- 2. <u>Scientific Computing using Matlab Course (nptel.ac.in)</u>
- 3. MATLAB Online MATLAB & Simulink (mathworks.com)

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
Part - III	Core Elective- 1	U21MA5 E1A	Linear Programming problem	55	5	-	4

Contact hours per semester: 60

Contact hours per week: 4

Year	Semester	Internal Marks	External Marks	Total Marks
Third	Third Fifth		75	100

Preamble

This Course provides the knowledge of applications of linear programming problems in real life situations to the students.

Course Outcomes (COs)

On successful completion of the course, the learners should be able to

СО	Course Outcome	Knowledge Level
No.		(RBT)
	remember and understand the concepts of Linear programming	K1, K2
CO1	problem such as Graphical, Simplex, Big – M Method and	
001	Duality, Transportation problem, Assignment problem,	
	Sequencing problem	
	apply the concepts of Graphical, Big- M Method, Duality,	K3
CO2	Transportation problem, Assignment problem, Sequencing	
	problem	
	analyze the concepts of Graphical, Big- M Method, Duality,	K4
CO3	Transportation problem, Assignment problem, Sequencing	
	problem	
	evaluate the problem on Graphical, Simplex, Big- M Method,	K5
CO4	Dual simplex method, Transportation problem, Assignment	
	problem, Sequencing problem	
COS	develop problem solving techniques using operation research	K6
	to diverse situations in mathematical contexts	

POs						PO6	PO7
	PO1	PO2	PO3	PO4	PO5		
COs							
CO1	3	2	3	2	2	2	3
CO2	2	3	2	2	2	3	-
CO3	3	2	2	1	3	-	2
CO4	2	2	1	2	1	2	2
CO5	1	1	2	2	2	2	2
Total Contribution of COs to POs	11	10	10	9	10	9	9
Weighted Percentage of COs Contribution to POs	73.33	66.66	66.66	60	66.66	60	60

CO-PO Mapping (Course Articulation Matrix)

Low 1; Medium 2; High 3; Not correlated -

COURSE CONTENT

Unit I: Linear programming problem

Mathematical formulation of LPP- Graphical method - Simplex method - Artificial variable technique.

Chapter 2, 3 & 4 – Sections: 3.1 – 3.5 & 4.1 – 4.4

Unit II: Duality

Concept of Duality - Primal and Dual Problems - Duality - Dual Simplex method.

Chapter 5 – Sections: 5.1 – 5.7

Unit III: Transportation Problem (L-11+T-1 Hours)

North-West Corner Rule-Matrix Minima method-Vogel's Approximation Method-

MODI Method – Degeneracy and Unbalanced Transportation problem.

Chapter 10 – Sections: 10.1, 10.9 -10.15

Unit IV: Assignment Problem

Hungarian Method - Unbalance Assignment Problem.

Chapter 11– Sections: 11.1 - 11.4 , 11.7

Unit V: Sequencing Problem

n-jobs and 2 – machines - n jobs and 3 machines – 2 jobs and m machines

Chapter 12 – Sections: 12.1 -12.6

(L-11+ T-1 Hours)

(L-11+ T-1 Hours)

em.

(L-11+ T- 1 Hours)

(L-11+T-1 Hours)

Tutorial Section:

Unit	Торіс	Hours
Ι	Graphical method, Simplex method	1
II	Dual Simplex method	1
III	MODI Method	1
IV	Hungarian Method	1
V	n- jobs and 2 –machines, 2 jobs and m machines	1

Text Book:

1. KantiSwarup, P.K. Gupta and Manmohan, 2006, Operations Research, 12th edition Sultan Chand & Sons.

Reference Books:

- 1. Gupta. P.K and D.S. Hira, Operations Research, S. Chand and Company.
- 2. B.J. Ranganath and A.S.Srikantappa, 2017, Operations Research, Yesdee Publishing House, Chennai.

- 1. <u>https://books.google.co.in/books?id=wYxffB62NUC&pg=PA229&dq=elective+ii+opera</u>
- 2. <u>SIMPLEX METHODS Swayam Prabha (newsonair.org.in)</u>
- 3. Assignment Problem Introduction | Operations Research (brainkart.com)

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
Part - III	Core Elective- 1	U21MA5E1B	Stochastic Process	55	5	-	4

Contact hours per semester: 60 Contact hours per week: 4

Year	Semester	Internal Marks	External Marks	Total Marks
Third	Third Fifth		75	100

Preamble

The course provides the knowledge of to know probability and distributive function, to understand the concept of stochastic process and identify Markov Chain.

Course Outcomes (COs)

On successful completion of the course, the learners should be able to

CO		Knowledge
	Course Outcome	Level
190.		(RBT)
	remember and understand the concept of probability and	K1, K2
CO1	distribution functions, stochastic process, Markov chains,	
	Markov processes	
	determine the generating function, Laplace transform of	K3
CO2	probability distribution. Higher transition probabilities,	
02	generation of independent, Bernoulli trails, reducible chains	
	Poisson processes, Markov process with discrete, state spaces	
CO3	classify probability distribution, state and chain, Markov chain	K4
05	– Poisson process	
	determine the specification of stochastic process, stability of	K5
CO4	Markov system, Markov Chain with continuous state space,	
	Erlang process, Generalization of Poisson Processes	
	formulate graph theoretic approach of Markov system, non	K6
CO5	homogenous chain, Birth and death processes, derived Markov	
	chain and Erlang processes	

POs						PO6	PO7
	PO1	PO2	PO3	PO4	PO5		
COs							
CO1	3	3	2	2	3	2	1
CO2	2	2	3	2	2	2	2
CO3	2	2	2	2	2	2	2
CO4	3	2	3	2	2	2	-
CO5	3	2	3	2	2	-	2
Total Contribution of COs to POs	13	11	13	10	11	8	7
Weighted Percentage of COs Contribution to POs	86.67	73.33	86.67	66.67	73.33	53.33	46.67

CO-PO Mapping (Course Articulation Matrix)

Low 1; Medium 2; High 3; Not correlated -

COURSE CONTENT

Unit I: Generating Functions

Generating functions - Laplace transform of probability distribution - Classification of distribution - Stochastic process - introduction - specification of Stochastic process **Chapter 1 - Sections: 1.1 – 1.5**

Unit II: Classification of States And Chains (L - 11 + T - 1 Hours)

Markov chains - Definition and examples - Higher transition probabilities Generalization of Independent Bernoulli Trials - classification of states and chains Determination of Higher transition probabilities - Stability of Markov systems - Graph theoretic approach

Chapter 2 - Sections: 2.1 - 2.7

Unit III: Markov Chains

Markov chain with Denumerable number states - Reducible chains Statistical inference for Markov chains - Markov chain with continuous state space Non homogeneous chains

Chapter 2 - Sections: 2.8 – 2.12

Unit IV: Markov Process

Markov process with discrete state space - Poisson process Poisson process and related distributions -Generalization of Poisson process - Birth and Death process

Chapter 3- Sections: 3.1 - 3.4

Unit V: Derived Markov Chains

Markov process with Discrete state space - Derived Markov chains - Erlang process

Chapter 3 - Sections: 3.5 - 3.7

(L - 11 + T - 1 Hours)

(L - 11 + T - 1 Hours)

(L - 11 + T - 1 Hours)

(L - 11 + T - 1 Hours)

Tutorial Section:

Unit	Торіс	Hours
Ι	Generating Function	1
II	Higher transition probabilities	1
III	Markov Chain	1
IV	Poisson Process	1
V	Derived Markov Chain	1

Text Book:

1. J.Medhi, Stochastic Process, 3rd Edition New Age International Publishers (p) Ltd

Reference Books:

- Suddhendu Biswas, Applied Stochastic Process, New Central Book Agency (P) Ltd Kolkatta
- Hoel Port and Stone, Introduction to Stochastic Process, Universal Book Stall, New Delhi

- 1. <u>StochasticProcesses.ppt (utk.edu)</u>
- 2. <u>Poisson.Proc.pdf (yale.edu)</u>
- 3. Derived Markov Chains. I (core.ac.uk)

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
Part - III	Core Elective - 1	U21MA5E1C	Combinatorial Mathematics	55	5	-	4

Contact hours per semester: 60 Contact hours per week: 4

Year	Semester	Internal Marks	External Marks	Total Marks
Third	Fifth	25	75	100

Preamble

The course is to introduce the basic concepts of pairings, understand relations, generating functions and to study the concept of designs and square block designs.

Course Outcomes (COs)

On successful completion of the course, the learners should be able to

CO No.	Course Outcome	Knowledge Level (RBT)
C01	remember and understand permutations pairing, Fibonacci	K1, K2
	sequence, relations and the concept of design	
CO2	solve the problems in ordered selections, recurrence, pairing	К3
02	inclusion, exclusion and designs	
CO3	analyze the properties of ordered selections, pairings, relations	K4
05	and block designs	
CO4	evaluate unordered selections, pairing within a set, using	K5
04	generating functions and block designs	
	derive the formulas using selections, pairings, generating	K6
CO5	functions, inclusion – exclusion principles and square block	
	designs	

POs						PO6	PO7
	PO1	PO2	PO3	PO4	PO5		
COs							
CO1	3	2	3	2	3	2	2
CO2	2	2	2	2	2	2	2
CO3	2	3	3	2	3	2	2
CO4	3	2	3	2	2	2	-
CO5	3	2	2	2	3	-	1
Total Contribution of COs to POs	13	11	13	10	13	8	7
Weighted Percentage of COs Contribution to POs	86.67	73.33	86.67	66.67	86.67	53.33	46.67

CO-PO Mapping (Course Articulation Matrix)

Low 1; Medium 2; High 3; Not correlated -

COURSE CONTENT

Unit I: Selections

Selections and Binomial coefficients – Permutations – Ordered Selections – Unordered Selections

- Miscellaneous Problems

Chapter 2 - Sections: 2.1 – 2.5

Unit II: Pairings Problems

Pairings Problems - Pairings within a set – Pairings between sets

Chapter 3 - Sections: 3.1 – 3.2

Unit III: Generating Functions

Recurrence – Fibonacci – type relations using generating functions – Miscellaneous methods.

Chapter 4 - Sections: 4.1 – 4.4

Unit IV: Inclusion and Exclusion Principles (L - 11 + T - 1 Hours)

The inclusion – Exclusion Principles – Rook polynomials

Chapter 5 - Section: 5.1 - 5.2

Unit V: Block designs

Block designs

Chapter 6 - Sections: 6.1

(L - 11 + T - 1 Hours)

(L - 11 + T - 1 Hours)

(L - 11 + T - 1 Hours)

(L - 11 + T - 1 Hours)

Tutorial Section:

Unit	Торіс	Hours
Ι	Ordered and unordered selections	1
II	Pairing within and between sets	1
III	Relations	1
IV	Inclusion – exclusion principles	1
V	block design	1

Text Book:

1. Ian Andersen, A first course in combinatorial Mathematics, Clarendon Press, Oxford

Reference Books:

- 1. A. W. Tucker, 2012, Applied Combinatorics, 6th edition, John Wiley & Sons, United States.
- 2. D. Cohen, 1978, Combinatorics, 2nd Edition, Wiley Publications United States.

- 1. <u>inclusion.dvi (utah.edu)</u>
- 2. <u>4. Combinations (Unordered Selections) (intmath.com)</u>

Category	Course	Course	Course	Lecture	Tutoria	Practica	Credi
	Type	Code	Title	(L)	l (T)	l (P)	t (C)
Part – IV	Skill Enhancement - 1	U21SE5S1	Women Studies	30	-	-	2

Contact hours per Semester: 30 Contact hours per week: 2

Year	Semester	Internal Marks	External Marks	Total Marks
Third	Fifth	-	50	50

Preamble

This is an introductory course that emphasizes the roles of women, their experiences and contributions to society and enables students to analyze contemporary issues from feminist perspective

Course Outcomes

On successful completion of the Course, the learners will be able to

CO No.	Course Outcome	Knowledge Level
CO1	remember the need for gender sensitisation, recall the role of Women as individuals in families and societies, recognise matriarchy and matrilineal societies. list out Women's movements and woman achievers, identify the role of women in National development, identify methods to promote inclusion of women in development of all sectors.	K1
CO2	understand the terms and concepts used in women's studies, recognize the need for gender sensitization, discuss about domestic violence against women, illustrate the representation of women in media/sports/politics/arts and literature, demonstrate how gender has been socially constructed and maintained through a variety of institutions	K2
CO3	apply concepts and theories of Women's Studies to life experiences and processes, provide guidance to ignorant women on women's rights, investigate gender issues and gender violence leashed out on women, review the life of women achievers	К3
CO4	analyse gender roles in domestic personal sphere and social spheres, explore the socio-cultural, socio-political and economic factors that deter women's talent, analyse socio-political systems and contemporary issues from feminist perspective	K4
CO5	evaluate the scope, importance and challenges of Women's Studies, appraise the role of women in rural and community development, assess the extent to which women have contributed to preservation of environment and natural resources and in turn to national development, appreciate the life of women achievers, reflect on the role of women in family and society	К5

Course content

Unit I: Introduction to women's studies

Definition, need, scope, importance and challenges of Women's Studies- Emergence of Women's studies as an academic discipline in India – - Need for gender sensitisation - Women as individuals in families and societies- Matriarchy and matrilineal societies. Women's movements - global and local.

Unit II: Role of women in family:

Study of the evolution of women's role – Women as individuals in families-Gender roles in domestic/ personal sphere- Women's roles, aspirations and familial expectations on women - Foeticide, Female infanticide, Sex selective abortion, Domestic violence, Gender issues, Gender violence, Maternal mortality rate, Property rights, Reproductive rights – Women's health and nutrition **Unit III: Role of women in society:**

Gender roles in social spheres- Choice of profession - Self , Family and Societal pressures, Decision making/ Leadership roles- myths and misconceptions- roles expected from women – stereotyping – Representation in media / politics / arts and literature / sports

Unit IV: Against all odds- Women achievers:

Socio-cultural, socio-political and economic factors that deter women's talent- Life narratives of women achievers- Savitri Bhai Phule, Dr.Muthu Lakshmi Reddy, Kiran Mazumdhar Shah, Kalpana Chawla, Saina Nehwal, Sania Mirza, Deepika Palikkal, Mary Kom, P T Usha, Smriti Mandanna, Arundhati Roy, Vandana Siva, Kamala Das, Indira Goswami, Amrita Pretham, Anita Desai, Jhumpa Lahiri, Kiran Desai, Shashi Deshpande.

Unit V: Role of women in National Development:

Role of women in rural and community development- community bio-diversity conservation –gender and Agro biodiversity-role of women in seed preservation- sustainable development- Joint forest management,- Chipko movement, Narmada Bachao Andolan—India's - Neem patent victory-Living Democracy Movement for reclaiming life's diversity and freedom.

Text books

- 1. Maithreyi Krishna Raj. (1986). "Women Studies in India: Some Perspectives". Popular Prakasham, Bombay.
- 2. Sharmila Rege, (Ed.). (2003). "Sociology of Gender: The Challenge of Feminist Sociological Knowledge". Sage Publications, New Delhi.
- 3. Veena Majumdar. (1974). "Report on the committee on the Status of Women: Towards Equality". Journal of Women Studies Kadambari, V. 2009. Gender Studies: A Primer. Chennai:
- 4. Devaki Jain and Pam Rajput (Ed). (2003). "Narratives from the Women's Studies Family: Recreating Knowledge, Sage, and New Delhi.
- 6. M.S.Swaminathan. (1998)."Gender Dimensions in Biodiversity Management". Konark publishers pvt ltd, New Delhi.

References

- 1. Amy S. Wharton. (2005). "The Sociology of Gender: An Introduction to Theory and Research". (KeyThemes in Sociology) Blackwell Publishing, UK, Indian Reprint, Kilaso Books, New Delhi
- 2. Jasbir Jain (Ed). (2005). "Women in Patriarchy: Cross Cultural". Rawat Publications, Jaipur.
- 3. Lerner, Gerda. (1986). "The Creation of Patriarchy". Oxford University Press, New Delhi.
- 4. Mala Khullar, (Ed). (2005). "Writing the Women's Movement: A Reader". Zubaan, Kali for Women, New Delhi.
- 5. Mies, Maria. (1980). "Indian Women and Patriarchy". Concept Publishing Company, New Delhi.
- 6. Promilla Kapur (Ed), Empowering Indian Women, Publication Division, Government of India, New Delhi, 20
- 7. Mitchell, J. 1975. Women in a Man Made World. Chicago: Rand McNally & Co
- 8. Putnam Tong, Rosemarie. 2013. Feminist Thought: A More Comprehensive Introduction.

USA: Westview.

- 9. Russell, Bertrand. 1936. Marriage and Morals. London: Bantam.
- 10. Smith, Bonnie. 2013. Women's Studies: The Basics. London: Routledge
- 11. Drinkwater, Barabara, Ed. 2000. Women in Sport. Oxford: Blackwell Science
- 12. Spence, Jean and Sarah Jane et al. 2010. Women Education and Agency 1600- 2000. New York: Routledge Publishing House.
- 13. Nancy. 2011. Feminism and Science. Indianapolis: Indiana University Press.
- 14. Tharu, Susie and K. Lalitha (ed). 1991 &1993. Women Writing in India, 2 Vols. New Delhi: Oxford University Press.
- 15. P.K.Rao. (2000) "Sustainable Development Economics and Policy". Blackwell, New Delhi.
- 16. Radha Kumar, (1993). "The History of Doing". Kali for Women, New Delhi.
- 17. Ronnie Vernooy, (Ed). (2006). "Social and gender Analysis Natural Resource Management: Learning studies and lessons from Aisa". Sage, New Delhi.
- 18. Swarup, Hemlata and Rajput, Pam. (2000). Gender Dimensions of Environmental and Development Debate: The Indian Experience". In Sturat S.Nagel, (ed). "India"s Development and Public Policy". Ashgate, Burlington.
- 19.Venkateshwara, Sandhay. (1995). "Environment, Development and the Gender Gap" Sage Publications, NewDelhi.

Web references

1.https://r.search.yahoo.com/_ylt=AwrxhWjc7_9geRUAlADnHgx.;_ylu=Y29sbwMEcG9zAzUEdnRpZAM Ec2VjA3Ny/RV=2/RE=1627414620/RO=10/RU=https%3a%2f%2fin.sagepub.com%2fenin%2fsas%2findian-journal-of-gender-

studies%2fjournal200917/RK=2/RS=wGNZp8L5sqXOSojTzCefS4hzShA-

2.https://r.search.yahoo.com/_ylt=Awrx5kom8f9gJDAAXC_nHgx.;_ylu=Y29sbwMEcG9zAzEEdnRpZAM Ec2VjA3Ny/RV=2/RE=1627414951/RO=10/RU=https%3a%2f%2fwgs.fas.harvard.edu%2fpast-thesistopics/RK=2/RS=cjxRQNT0UmGS1Fia5z9Er8a8P.I-

Category	Course	Course	Course	Lecture	Tutorial	Practical	Credit
	Type	Code	Title	(L)	(T)	(P)	(C)
PART-V	Proficiency Enhancement Courses - Self Study Course		General Studies	-	-	-	1

Proficiency Enhancement Course (Self Study Course) : General Studies

Year	Semester	-Completion only-
I to III year	I to VI Semester	

Course outcomes

Upon completion of the Course, the learner will be able to

S.No.	Course Outcomes	Knowledge
		level
CO1	recall the basic principles and laws in Science, recap the important	K1
	events in history, remember the geography and culture of India and	
	Tamil Nadu, recapitulate the events in Indian polity and Tamil	
	Nadu administration, remember current affairs, geographical land	
	marks, welfare schemes by the Government, scientific inventions	
	and problems in public delivery system	
CO2	comprehend the basic principles and laws in Science, demonstrate	K2
	the important events in history, reproduce the geography and culture	
	of India and Tamil Nadu, the events in Indian polity and Tamil	
	Nadu administration, Public Corruption and Lokpal & Lok ayuktha	
	act, Transport and communication system in India, Industrial growth	
	in T.N., unemployment and poverty eradication issues	
CO3	solve problems based on Percentage, Ratio and Proportion Time and	K3
	Work, Simple interest, Compound interest, Area, Volume related	
	problems and exhibit mathematical skills	
CO4	analyse and answer questions based on logical, visual and alpha	K4
	numeric reasoning	
CO5	evaluate the constitution of India, Indian Economy, Tamil Nadu	K5
	administration, social geography of India and Tamil Nadu, political	
	system in India, pollution and its control measures	

COURSE CONTENT

UNIT-I: General Science

- i) General Scientific Laws Mechanics Properties of Matter, Force, Motion and Energy –Electricity and Magnetism, Light, Sound, Heat, Nuclear Physics, Electronics and Communications, solar energy
- ii) Atomic structure, Elements and Compounds, Acids, Bases, Salts, Petroleum Products, Fertilisers, Pesticides, Energy resources
- iii) Classification of Living Organisms, Evolution, Genetics, Physiology, Nutrition, Health and Hygiene, Diseases
- iv) Environment and Ecology- Biosphere, Conservation of biodiversity- Biosphere Reserves of India, Sanctuaries and National parks, Environmental pollution, causes and control measures, alternate sources of energy

UNIT-II: General knowledge, Current Events, Quantitative Aptitude and Mental Ability

- Latest Diary of Events National symbols Profile of States and Union territories Eminent persons and places in news – Sports - Books and Authors-Prominent Personalities in various spheres – Arts, Science, Literature and awards.
- ii) Political parties and Political system in India Public awareness and General administration - Welfare oriented Government Schemes and their utility, Problems in Public Delivery Systems. Public Corruption and Lokpal & Lokayuktha act
- iii) Geographical landmarks Current socio economic issues Latest inventions in Science and Technology. Industrial growth in India and Tamilnadu
- iv) Quantitative Aptitude and Mental Ability- Simplification Percentage Ratio and Proportion- Time and Work - Simple interest - Compound interest - Area - Volume – Logical Reasoning - Visual Reasoning – Alpha numeric Reasoning – Number Series

UNIT-III: Geography of India & Tamil Nadu

- Location Physical features Monsoon, Rainfall, Weather andClimate Water Resources-Rivers in India - Soil, Minerals and Natural Resources - Forest and Wildlife – Agricultural pattern
- (ii) Transport Communication
- (iii) Social Geography –Population, Census, poverty eradication and unemployment
- (iv) Natural calamity Disaster Management Environmental pollution Climate change, pandemics in history – Green energy initiatives

UNIT-IV : History and Culture of India & Tamil Nadu

i) Ancient India: Indus Valley Civilization - The Maurian empire- Age of the Guptasvardhana empire- Nalanda university

 ii) Medieval India : The Delhi Sultanate, Mughals and Marathas - Age of Vijayanagara and Bahmani Kingdoms –South Indian History. 						
iii) National Renaissance	: Early uprising against British rule – sepoy mutiny Indian National Congress - Emergence of leaders- Gandhian Era					
iv) Tamil Nadu	: History & Culture, Socio-Political Movements					

UNIT-V : Indian Polity, Economy and Tamil Nadu Administration

i)	Constitution of India - Preamble to the Constitution –
,	Salient features of the Constitution - Citizenship, Fundamental Rights,
	Fundamental Duties, Directive Principles of State Policy
ii)	Union Executive, Union Legislature (Parliament) –
	State Encounting State Locialations - Local Community Day theoret Day

- State Executive, State Legislature Local Governments, Panchayat Raj-Spirit of Federalism - Centre - State Relationships- Election – Judiciary in India – Rule of Law
- iii) Indian Economy Five-year plan models an assessment Planning Commission and Niti Ayog - Reserve Bank of India - Fiscal Policy and Monetary Policy – Finance Commission –Goods and Services Tax
- iv) Governance in India and Development-Administration in Tamil Nadu

Text Books:

- 1. TNSCERT Books (Science and Social) from Std VI -X
- 2. Manorama year Book (Tamil)
- 3. Arihant General Knowledge, 2022-Manohar Pandey

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
Part - III	Core- 13	U21MA613	Complex Analysis	80	10	-	4

Contact hours per semester: 90 Contact hours per week: 6

Year	Semester	Internal Marks	External Marks	Total Marks
Third	Sixth	25	75	100

Preamble

This course provides the knowledge of complex variables, analytic functions and the concepts of elementary transformations and residues.

Course Outcomes (COs)

On successful completion of the course, the learners should be able to

CO No.	Course Outcome	Knowledge Level (RBT)
CO1	remember and understand the basic concepts of differentiable	K1, K2
COI	functions, definite integrals, series of analytic functions and transformations	
CO2	determine C-R equations, propertied of definite integrals,	K3
02	Taylor's and Laurent's series, conformal mappings	
CO3	analyze analytic functions, Cauchy's theorem, zeros of	K4
005	analytic functions, singularities, bilinear transformations	
	relate harmonic and analytic functions. Evaluate definite	K5
CO4	integrals using Cauchy's integral formula, residues of	
	functions, fixed points, improper integrals	
	solve problems in analytic functions. Derive higher derivative	K6
CO5	theorem, general form of bilinear transformation. Find the	
	integral values of complex function using contour integration	

POs						PO6	PO7
	PO1	PO2	PO3	PO4	PO5		
COs							
CO1	2	3	2	2	3	1	3
CO2	1	2	2	1	2	2	2
CO3	2	3	1	2	3	-	2
CO4	1	2	2	1	2	1	3
CO5	2	3	1	2	1	1	-
Total Contribution of COs to POs	8	13	8	8	11	5	10
Weighted Percentage of COs Contribution to POs	53.33	86.67	53.33	53.33	73.33	33.33	66.67

CO-PO Mapping (Course Articulation Matrix)

Low 1; Medium 2; High 3; Not correlated -

COURSE CONTENT

Unit I: Analytic functions

Functions of a complex variable - Derivatives - Cauchy - Riemann equations -

sufficient conditions - Polar form - Analytic functions - Harmonic functions

Chapter 2 - Sections: 2.1 – 2.8

Unit II: Transformations

Conformal mappings-basic properties-Bilinear maps - fixed points - Applications.

Chapter 3 - Sections: 3.1 – 3.5

Unit III: Complex Integration

Definite integrals – Contours – Cauchy – Goursat theorem — Cauchy Integral formula – Morera"s theorem.

Chapter 6 - Sections: 6.1 – 6.3

Unit IV: Series Expansions

Taylor"s series – Examples – Laurent"s series – Zeros of analytic functions – Principal part of functions.

Chapter 7 - Sections: 7.1 – 7.3

Unit V: Calculus of Residues

Residues - Residue theorem –Residues at poles Evaluation of improper real integrals – improper integrals involving sines and cosines – Definite integrals involving sines and cosines.

Chapter 8 - Sections: 8.1 – 8.3

(L - 17 + T - 1 Hours)

(L - 17 + T - 1 Hours)

(L - 17 + T - 1 Hours)

$\left(L-17+T-1 \;Hours\right)$

(L - 17 + T - 1 Hours)

Tutorial Section:

Unit	Торіс	Hours
Ι	Harmonic functions	1
II	Cauchy integral formula	1
III	Zeros of analytic function	1
IV	Integrals involving sine and cosine	1
V	Fixed points of Bilinear transformation	1

Text Book:

1. S. Arumugam and Issac, 2018, Complex Analysis, Scitech Publications PVT Ltd.

Reference Books:

- Ponnuswamy .S, 2005, Foundations of Complex Analysis, 2nd Edition, Narosa Publication House, New Delhi.
- 2. Duraipandian .P and Lakshmi Duraipandian, 2001, Complex Analysis, Emerald Publications, Chennai.

- 1. <u>https://www.coursera.ord>learn</u> (Introduction to complex analysis | coursera)
- 2. <u>https://www.oulu.f1>files</u>
- 3. lecture14.pdf (iitg.ac.in)

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
Part- III	Core – 14	U21M A614	Dynamics	70	5	-	4

Contact hours per semester: 75 Contact hours per week: 5

Year	Semester	Internal Marks	External Marks	Total Marks
Third	Sixth	25	75	100

Preamble

To provide a basic knowledge of the behavior of objects in motion and to develop a working knowledge to handle practical problems.

Course Outcomes (COs)

On successful completion of the course, the learners should be able to

CO No.	Course Outcome	Knowledge Level (RBT)
CO1	understand the concepts of projectiles, collision of elastic bodies simple Harmonic motion, motion under the action of central forces, Differential equation of central orbit	K1, K2
CO2	apply the characteristics of projectile, laws of impact, composition of SHMs, velocity and acceleration in polar co-ordinates pedal equation of central orbit to find the solution of the given problems.	К3
CO3	analyze the range on an inclined plane direct and oblique impact, composition of SHMs, motion under the action of central forces, Differential equation of central orbit.	К4
CO4	evaluate the problems related with characteristics of projectile, collusion of elastic bodies, SHMs, motion under the action of central forces, Differential equation of central orbit.	K5
CO5	solve the problem related with objects to motion.	K6

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	3	2	2	3	2	3
CO2	1	2	2	1	2	1	3
CO3	2	3	1	2	3	1	2
CO4	1	2	2	1	2	1	2
CO5	2	3	1	2	1	-	-
Total Contribution of COs to POs	8	13	8	8	11	5	10
Weighted Percentage of COs Contribution to POs	53.33	86.67	53.33	53.33	73.33	33.33	66.67

CO - PO Mapping (Course Articulation Matrix)

Low 1; Medium 2; High 3; Not correlated -

COURSE CONTENT

Unit I: Projectiles

Projectiles- Equation of path - range - maximum height- time of flight- range on an inclined plane problems

Chapter 6 - Sections: 6.1 – 6.16

Unit II: Collision of Elastic Bodies

Collision of elastic bodies- Laws of impact- direct and oblique impact-Problems.

Chapter 8 - Sections: 8.1 – 8.9

Unit III: Simple Harmonic Motion

Simple Harmonic Motion (SHM) in a straight line- Geometrical representation – composition

of SHM's of the same period in the same line and along two perpendicular directions – problems.

Chapter 10 - Sections: 10.1 – 10.7

Unit IV: Motion Under the Action of Central Forces (L-14 + T - 1 Hours)

Motion under the action of central forces – velocity and acceleration in polar co-ordinates – problems.

Chapter 11 - Sections: 11.1 - 11.5

Unit V: Differential Equations of central orbit

Differential Equation of central orbit - pedal equation of central orbit - problems to find the law of force towards the pole when the orbit is given.

Chapter 11 - Sections: 11.6 – 11. 10

(L-14 + T - 1 Hours)

(L-14 + T - 1 Hours)

(L-14 + T - 1 Hours)

(L-14 + T - 1 Hours)

Tutorial Section:

Unit	Торіс	Hours
Ι	Characteristics of motion of the projectile	1
II	Direct and oblique impact	1
III	SHM in Straight lines and perpendicular lines	1
IV	Central forces	1
V	Central Orbit	1

Text Books:

1. Venkatraman, M.K. - A Text Book on Dynamics, Agasthiar Publication, Trichy.

References Books:

- 1. Narayanan, S- Dynamics, 1986, 16th Edition, S.Chand & company, New Delhi.
- Duraipandiyan, P, Laxmi Duraipandian and Muthamiz Jayaprgasam, 2003, Mechanics, S.Chand & Company.

- 1. <u>Central Force: Equations, Motions, Fields & Examples (collegedunia.com)</u>
- 2. Chapter 8. Cams Theory of Machines | Online Tutorials (w3it.dev)
- 3. <u>CENTRAL ORBIT | Meaning & Definition for UK English | Lexico.com</u>

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
Part – III	Core - 15	U21M A615	Graph Theory	85	5	-	4

Contact hours per semester:90

Contact hours per week: 6

Year	Semester	Internal Marks	External Marks	Total Marks
Third	Sixth	25	75	100

Preamble

The course provides and to improve the notation of Graph Theory and learn the basic concepts and its applications and also the techniques of combinatorics in Graph Theory.

Course Outcomes (COs)

On successful completion of the course, the learners should be able to

CO No.	Course Outcome	Knowledge Level (RBT)
CO1	find the basic concepts of Graph Theory and its definitions of various graphs	K1, K2
CO2	demonstrate different types of Graphs	К3
CO3	apply the Graph Theory concepts in various problems	K4
CO4	analyze different types of Graphs	K5
CO5	evaluate the problems and theorems using graph theory applications	K6

POs							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
C01	3	2	3	2	2	2	3
CO2	2	3	2	3	1	1	2
CO3	3	2	3	2	1	-	-
CO4	3	3	2	2	2	2	3
CO5	2	2	2	1	2	2	2
Total Contribution of COs to POs	13	12	12	10	8	8	10
Weighted Percentage of COs Contribution to POs	86.66	80	80	66.6	53.33	53.33	66.66

CO - PO Mapping (Course Articulation Matrix)

Low 1; Medium 2; High 3; Not correlated -

COURSE CONTENT

Unit I: Graphs and Subgraphs

Definition and examples of graph - subgraph - isomorphism - independent sets and

coverings - matrices - operation in graphs

Chapter 2 – Sections: 2.1 – 2.9 (Except 2.5, 2.7)

Unit II: Degree Sequences

Degree sequence – graphic sequence – walks – trails and paths – connectedness and components – Blocks connectivity

Chapter 3 – Sections: 3.1 – 3.2, Chapter 4 – Sections: 4.1 – 4.4

Unit III: Eulerian Graphs

Eulerian graphs - Hamiltonian graphs - characterization of trees - center of a tree

Chapter 5 – Sections: 5.1 – 5.2, Chapter 6 – Sections: 6.1 – 6.2

Unit IV: Chromatic Number

Definition and properties of planar graphs - chromatic number and chromatic index of graphs

Chapter 8 – Sections: 8.1 – 8.3, Chapter 9 – Section: 9.1

(L-17 + T - 1 Hours)

(L-17 + T - 1 Hours)

(L-17 + T - 1 Hours)

(L-17 + T - 1 Hours)

Unit V: Di Graphs

(L-17+ T - 1 Hours)

Chromatic polynomials – definitions and basic properties of digraphs – paths and connectedness in digraphs.

Chapter 9 – Sections: 9.4 & Chapter 10 – Sections: 10.1 – 10.2

Tutorial Section:

Unit	Торіс	Hours
Ι	Definition of graphs	1
II	Basic concepts of Graph Theory	1
III	Different application of graphs	1
IV	Theorems	1
V	Problems	1

Text Books:

1. Arumugam.S and S. Ramachandran – Invitation to graph Theory, Scitech publications, Chennai

References Books:

- 1. Kumaravelu. S and Susheela Kumaravelu Graph Theory.
- 2. Harary Graph Theory

- 1. <u>Hamiltonian Graphs (tutorialspoint.com)</u>
- 2. Graph Theory Course (swayam2.ac.in)
- 3. Graph Theory Fundamental Concepts javatpoint

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
Part - III	Core Elective - II	U21MA6E2A	Number Theory	70	5	-	4

Contact hours per semester: 75 Contact hours per week: 5

Year	Semester	Internal Marks	External Marks	Total Marks
Third	Sixth	25	75	100

Preamble

The aim of the course is to highlight the beauties in the world of numbers also to prepare the students for coding through congruence.

Course Outcomes (COs)

On successful completion of the course, the learners should be able to

CO No.	Course Outcome	Knowledge Level (RBT)
CO1	remember and understand mathematical induction concepts,	K1, K2
	GCD, basic properties of congruences	
CO2	solve the problems using induction method, division algorithm,	K3
02	congruences, factorization	
CO3	analyze the properties of numbers, congruences and	K4
003	factorization	
	relate division algorithm, Euclidean algorithm, Fermat's	K5
CO4	theorem, Wilson's theorem, linear congruence and Chinese	
	Remainder theorem	
CO5	find the solution using binomial theorem, Karachiite	K6
	Factorization method of Diophantine equation $ax + by = c$	

POs						PO6	PO7
	PO1	PO2	PO3	PO4	PO5		
COs							
CO1	2	2	2	2	2	1	-
CO2	3	3	3	2	2	-	2
CO3	2	2	2	3	2	2	2
CO4	2	3	3	2	2	3	2
CO5	2	3	3	2	2	2	1
Total Contribution of COs to POs	11	13	13	11	10	8	7
Weighted Percentage of COs Contribution to POs	73.33	86.67	86.67	73.33	66.67	53.33	46.67

CO-PO Mapping (Course Articulation Matrix)

Low 1; Medium 2; High 3; Not correlated -

COURSE CONTENT

Unit I: Mathematical Induction

Peano"s Axioms – Mathematical Induction – The Binomial Theorem – Early Number Theory.

Chapter 1 – Sections: 1.1 – 1.2, Chapter 2 – Section: 2.1

Unit II: Divisibility Theory in the Integers

Division Algorithm – GCD – Euclidean Algorithm – The Diaphantine Equation ax+by=c.

Chapter 2 – Sections: 2.2 – 2.5

Unit III: Primes & their Distribution (L-14 + T - 1 Hours)

The fundamental Theorem of Arithmetic – The Sieve of Eratosthenes – The Goldbach conjecture. **Chapter 3 – Sections: 3.1 – 3.3**

Unit IV: The Theory of Congruences

Basis properties of congruences – Linear congruence and the Chinese Remainder Theorem.

Chapter 4 – Sections: 4.2 – 4.4

Unit V: Fermat's Theorem

Fermat"s Theorem – Wilson"s Theorem.

Chapter 5 – Sections: 5.2 – 5.3

(L-14 + T - 1 Hours)

(L-14 + T - 1 Hours)

(L-14 + T - 1 Hours)

(L-14 + T - 1 Hours)

Tutorial Section:

Unit	Торіс	Hours
Ι	Binomial theorem	1
II	The diaphantine equations $ax + by = c$	1
III	Sieve of Eratos theorem	1
IV	Chinese remainder theorem	1
V	Fermat's theorem, wilson's theorem	1

Text Book:

1. David.M. Burton, Elementary Number Theory, 6th Edition, Tata McGraw Hill Education Pvt. Ltd

Reference Books:

- 1. Ivan Niven and H, Zuckerman, An Introduction to Theory of Numbers.
- 2. Kumaravelu. S, and Susheela Kumaravelu, 2002, Elements Theory, Nagercoil.

- 1. Binomial Theorem GeeksforGeeks
- 2. Chinese Remainder Theorem | Brilliant Math & Science Wiki
- 3. Sieve of Eratosthenes GeeksforGeeks

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
Part - III	Core Elective - 2	U21MA6E2B	Discrete Mathematics	70	5	-	4

Contact hours per semester: 75 Contact hours per week: 5

Year	Semester	Internal Marks	External Marks	Total Marks
Third	Sixth	25	75	100

Preamble

The course provides the knowledge of mathematical logic, basic of lattices and Boolean algebra, number system and codes.

Course Outcomes (COs)

On successful completion of the course, the learners should be able to

СО	Course Outcome	Knowledge
No.	Course Outcome	Level
-		(KB1)
	remember and understand conjunction, graphs, Boolean	K1, K2
CO1	algebra, decimal, binary, octal, Hexadecimal, lattices and	
	posets	
	determine statement formula and truth table, properties of	K3
CO2	lattices, special lattices, normal form, binary arithmetic	
	operations to numbers	
	analyze conditional and bi conditional logic, properties in	K4
CO3	groups and monoids, crating networks BCD, weighted excers	
	time, statement and predicate calculus	
CO4	determine tautologies group codes, minimal sums of products,	K5
04	gray code, relate statement calculus and Predicate calculus	
	derive statement and well defined formula solve problems in	K6
CO5	normal forms, lattices and Boolean algebra, number system and	
	codes	

POs						PO6	PO7
	PO1	PO2	PO3	PO4	PO5		
COs							
CO1	3	3	2	2	3	2	1
CO2	2	2	3	2	2	3	2
CO3	2	2	2	2	2	2	2
CO4	3	2	3	2	2	-	2
CO5	3	2	3	2	2	1	-
Total Contribution of COs to POs	13	11	13	10	11	8	7
Weighted Percentage of COs Contribution to POs	86.67	73.33	86.67	66.67	73.33	53.33	46.67

CO-PO Mapping (Course Articulation Matrix)

Low 1; Medium 2; High 3; Not correlated -

COURSE CONTENT

Unit I: Mathematical logic

Statement and notation – Connectives – Negation – Conjunction – Disjunctions – Statement formula and truth table – conditional and Biconditional – Well defined formulae – Tautologies.

Chapter 1 - Sections: 1-1, 1-2.1 to 1-2.8

Unit II: Theory of Inference

Normal forms - The theory of inference for the statement calculus

Chapter 1 – Sections: 1-3, 1-4

Unit III: Algebraic Structures

Algebraic systems - Semigroups and Monoids

Chapter 3 – Sections: 3-1 & 3-2

Unit IV: Lattices and Boolean algebra (L – 14 + T- 1 Hours)

Lattices and Posets - Properties of lattices - special lattices - Boolean algebra

- Chapter 4 Sections: 4-1 & 4-2
- **Unit V: Boolean Functions**

Boolean functions - Representation and Minimization of Boolean functions

Chapter 4 – Sections: 4-3 & 4-4

(L – 14 + T- 1 Hours)

(L – 14 + T- 1 Hours)

(L - 14 + 1 - 110018)

(L - 14 + T - 1 Hours)

(L - 14 + T - 1 Hours)

III B.Sc MATHEMATICS

Tutorial Section:

Unit	Торіс	Hours
Ι	conditional and Biconditional	1
II	Normal forms	1
III	semigroups and monoids	1
IV	special lattices	1
V	Boolean functions	1

Text Book:

 Tremblay and Manohar, 1997, Discrete Mathematical Structures with application to Computer Science, (Tata Mc Graw Hill, New Delhi)

Reference Books:

- 1. Ralph P. Grumaldi Pearson Edelen, Discrete and Combinatorial Mathematics an applied Introduction, 4th edition.
- 2. Venkataraman M. K and others, 2000, Discrete mathematics, The National Publishing Company.

- 1. Boolean Algebra Laws, Rules, Theorems, Examples (cuemath.com)
- 2. I-1.pdf (etsu.edu)
- 3. Boolean Expression/Function (tutorialspoint.com)

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
Part - III	Core Elective - 2	U21MA6E2C	Fuzzy Sets	70	5	-	4

Contact hours per semester: 75 Contact hours per week: 5

Year	Semester	Internal Marks	External Marks	Total Marks
Third	Third Sixth		75	100

Preamble

The course provides the knowledge about fuzzy concepts to the students. To facilitate the students to study fuzzy operations and fuzzy numbers.

Course Outcomes (COs)

On successful completion of the course, the learners should be able to

CO		Knowledge
	Course Outcome	Level
190.		(RBT)
	remember the basic concepts of crisp sets and understand the	K1, K2
CO1	concepts of fuzzy sets, representation of fuzzy sets, fuzzy set	
	operations, fuzzy arithmetic and fuzzy decision making	
CO2	apply the concept of fuzzy set operations, fuzzy arithmetic	K3
002	and fuzzy decision making	
CO3	analyze the concept of fuzzy set operations, fuzzy arithmetic	K4
COS	and fuzzy decision making	
	evaluate α -cut, strong α -cut of fuzzy sets, fuzzy union, fuzzy	K5
CO4	intersection, fuzzy complement, fuzzy arithmetic and fuzzy	
	decision making	
	solve fuzzy linear programming problems and find α -cut,	K6
CO5	strong α -cut of fuzzy sets, fuzzy union, fuzzy intersection,	
	fuzzy complement	

POs						PO6	PO7
	PO1	PO2	PO3	PO4	PO5		
COs							
CO1	3	3	3	3	3	2	3
CO2	3	3	3	3	3	1	3
CO3	3	3	3	3	2	1	2
CO4	3	3	3	3	3	-	3
CO5	2	2	2	2	3	1	-
Total Contribution of COs to POs	14	14	14	14	14	5	11
Weighted Percentage of COs Contribution to POs	93.33	93.33	93.33	93.33	93.33	33.33	73.33

CO-PO Mapping (Course Articulation Matrix)

Low 1; Medium 2; High 3; Not correlated -

COURSE CONTENT

Unit I: Crisp Sets Vs Fuzzy Sets:

Crisp Sets – Fuzzy Sets – Basic Types – Basic Concepts

Chapter 1 – Sections: 1.2 – 1.4

Unit II: Representation of Fuzzy Sets

Additional properties of a-cuts - representations of fuzzy sets - Extension principle for fuzzy sets. Chapter 2 – Sections: 2.1 - 2.3

Unit III: Fuzzy set operations

Fuzzy complements – Fuzzy intersections : t-norms – Fuzzy Unions : t-conorms.

Chapter 3 – Sections: 3.2 - 3.4

Unit IV: Fuzzy set operations & Fuzzy Arithmetic (L-14 + T-1 Hours)Fuzzy set operations: Combinations of operations – Aggregation operations. Fuzzy Arithmetic: Linguistic variables – Arithmetic operations on intervals Chapter 3 – Sections: 3.5, 3.6 & Chapter 4 – Sections: 4.2, 4.3

Unit V: Fuzzy Decision Making Individual Decision Making – Multi-person decision making – Fuzzy linear Programming. Chapter 15 - Sections: 15.2, 15.3 & 15.7

(L-14 + T-1 Hours)

(L-14 + T-1 Hours)

(L-14 + T- 1 Hours)

(L-14 + T-1 Hours)

Tutorial Section:

Unit	Торіс	Hours
Ι	Fundamental Properties of crisp sets, Theorems	1
	and problems on fuzzy sets	
II	Additional properties of α -cuts, Extension	1
	principle for fuzzy sets	
III	Fuzzy complements, t-norms, t-conorms	1
IV	Combinations of operations, Aggregation	1
	operations.	
V	Fuzzy Decision Making, Fuzzy Linear	1
	programming problems	

Text Book:

1. George J. Klir and Bo Bo Yuan, 2002, Fuzzy sets and Fuzzy Logic Theory Applications, Prentice Hall of India, New Delhi.

Reference Books:

- 1. George J. Klir and Tina. A Folger, 2003, Fuzzy sets, uncertainty and Informations Prentice Hall of India, New Delhi.
- 2. Pundir. Pundir, 2015, Fuzzy Sets and Their Applications, Pragathi Prakashan, Meerut.

- 1. Introduction to Fuzzy Set Theory, Arithmetic and Logic Course (nptel.ac.in)
- 2. <u>PPT Fuzzy Sets PowerPoint Presentation, free download ID:543941 (slideserve.com)</u>
- 3. FUZZY COMPLEMENT (slideshare.net)

Category	Co T	urse ype	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
Part – III	Com on	prehensi – II	U21MA4 C3	Comprehension in Mathematics – III	-	-	-	1
Year		Semester		Internal Marks	Externa	al Marks	Total Marks	
Second		Fo	our	-	50		50	

Multiple Choice Questions taken from Core and Core Elective papers in Semester V & VI

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practic al (P)	Credit (C)
Part – IV	Skill Enhancem ent - II	U21M A6S2	Mathematical Reasoning	30	-	-	2

Contact hours per semester: 30 Contact hours per week: 2

Year	Semester	Internal Marks	External Marks	Total Marks
Third Sixth		-	50	50

Preamble

This course aims at developing logical thinking and mathematical reasoning. The science of coding and decoding is a hallmark in this era of communication and networking. A logical deduction is an important tool for any sequential programming which is an essence of the present electronic era.

Course Outcomes (COs)

On successful completion of the course, the learners should be able to

CO No.	Course Outcome	Knowledge Level (RBT)
CO1	remember and understand some basic mathematical	K1, K2
	concepts to study the Mathematical reasoning	
CO2	apply the basic concepts of mathematical logic to solve	K3
	problems in competitive exams	
CO3	analyze the concepts of blood relations, coding, decoding,	K4
	puzzle test, logical deduction, arguments, deriving	
	conclusions from passages and theme deduction	
	evaluate the problems in of blood relations, coding,	K5
CO4	decoding, puzzle test, logical deduction, arguments,	
	deriving conclusions from passages and theme	
	deduction	
	solving the problems in mathematical reasoning using	K6
CO5	some basic concepts	

POs COs	PO 1	PO2	РО 3	PO4	PO5	PO6	PO7
CO1	3	3	2	2	3	1	1
CO2	3	2	2	3	3	1	1
CO3	3	2	1	3	3	2	2
CO4	2	2	2	3	2	-	1
CO5	2	2	1	2	2	1	-
Total Contribution of COs to POs	13	11	8	13	13	5	5
Weighted Percentage of COs Contribution to POs	86.6 7	73.3 3	53. 33	86.67	86.67	33.33	33.3 3

CO - PO Mapping (Course Articulation Matrix)

Low 1; Medium 2; High 3; Not correlated -

COURSE CONTENT

Unit – I : Relations

Blood relation – Deciphering jumbled up descriptions, Relation puzzle and coded relations.

Section I : 5

Unit – II: Coding and Decoding

Coding and Decoding - Letter decoding, Direct letter coding, Number/symbol coding - Matrix

Coding- Substitution – Deciphering message word codes – Deciphering number and symbol codes

for messages – Jumbled coding.

Section I:4

Unit – III: Puzzle Test

Puzzle test: Classification type – Seating/placing arrangements- Comparison type – Sequential order of things – Selection based on given conditions – Family based puzzles.

Section I:6

Unit – IV: Logical Deduction Logical deduction – Arguments – Assumptions.

Section II : 1, 2 & 3

(L-5+T-1 Hours)

(L-5+T-1 Hours)

(L-5+T-1 Hours)

(L-5+T-1 Hours)

Unit – V: Deriving conclusions from passages

(L- 5 + T- 1 Hours)

Deriving conclusions from passages – Theme deduction

Section II : 6 & 7

Tutorial Section:

Unit	Торіс	Hours
Ι	Relation puzzle and coded relations	1
II	Deciphering message word codes	1
III	Seating/placing arrangements	1
IV	Arguments and Assignments	1
V	Theme deduction	1

Text Books:

1. Aggarwal R.S, 2006, A Modern approach to Verbal & Nonverbal Reasoning, S. Chand Company Ltd.

Reference Books:

- 1. Aggarwal R.S, 2010, A Modern approach to Verbal & Nonverbal Reasoning, S. Chand Company Ltd.
- 2. Aggarwal R.S, 2019, A Modern approach to Verbal & Nonverbal Reasoning, S. Chand Company Ltd.

- 1. https://www.youtube.com/watch?v=4RvlI-FlVnY
- 2. https://www.youtube.com/watch?v=LRdLhfDupMU
- 3. CN106548124A Theme deduction system, theme presumption method Google Patents

Category	Course Type	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
Part – IV	Extra Departm ent Course Open Elective	U21M A6OE	Quantitative Aptitude	-	-	-	3

Year	Semester	Internal Marks	External Marks	Total Marks
Third Sixth		-	100	100

Preamble

.

This course aims at developing logical thinking and mathematical reasoning. The science

of coding and decoding is a hallmark in this era of communication and networking.

Course Outcomes (COs)

On successful completion of the course, the learners should be able to

CO No.	Course Outcome	Knowledge Level (RBT)
CO1	remember and understand the basic rules for percentage,	K1, K2
	profit and loss, mean, median, mode, logical sequence of	
	words, coding, decoding and puzzle test	
CO2	apply the basic concepts of mathematical logic to solve	K3
	problems in competitive exams	
CO3	analyze problem solving method of odd man out series,	K4
	percentage, profit and loss, mean, median, mode, logical	
	sequence of words, coding, decoding and puzzle test	
	evaluate the problems in odd man out series,	K5
CO4	percentage, profit and loss, mean, median, mode,	
	logical Ven diagram, logical sequence of words,	
	coding, decoding and puzzle test	
	find the solutions towards simplification related	K6
CO5	problems on percentage, profit and loss, , mean, median,	
	mode, logical sequence of words, coding, decoding and	
	puzzle test	

POs COs	PO 1	PO2	PO 3	PO4	PO5	PO6	PO7
C01	3	3	2	2	3	2	2
CO2	3	2	2	3	3	1	1
CO3	3	2	1	3	3	1	-
CO4	2	2	2	3	2	1	1
CO5	2	2	1	2	2	-	1
Total Contribution of COs to POs	13	11	8	13	13	5	5
Weighted Percentage of COs Contribution to POs	86.6 7	73.3 3	53. 33	86.67	86.67	33.33	33.3 3

CO - PO Mapping (Course Articulation Matrix)

Low 1; Medium 2; High 3; Not correlated -

COURSE CONTENT

Unit – I : Percentage

Odd man out series - Percentage - Profit and Loss

Section I: 35, 10, 11 in Text Book I

Unit – II: Central Tendency

Mean – Median - Mode.

Sections: 2.1-2.3 in Text Book II

Unit – III: Logical Sequence

Logical Ven diagram - Logical sequence of words

Section I: 9 & 13 in Text Book III

Unit – IV: Coding

Coding - decoding

Section I: 4 in Text Book III

III B.Sc MATHEMATICS Unit – V: Puzzle test

Puzzle test – Classification type questions- seating / placing arrangements – comparisontype questions.

Sections I : 6 Type I, II & III in Text Book III

Text Books:

- 1. Aggarwal. R. S , 2014, Quantitative Aptitude , S . Chand and Company Ltd., New Delhi.
- 2. Arumugam. S & Thangapandian Issac. A, 2013, Statistics, New Gamma Publication House, Palayamkottai.
- 3. Aggarwal R.S, 2005, A Modern approach to Verbal & Nonverbal Reasoning, S. Chand Company Ltd, New Delhi.

Reference Books:

- 1. Aggarwal R.S, 2010, A Modern approach to Verbal & Nonverbal Reasoning, S. ChandCompany Ltd.
- 2. Aggarwal R.S, 2019, A Modern approach to Verbal & Nonverbal Reasoning, S. ChandCompany Ltd.

- 1. <u>https://www.youtube.com/watch?v=ivE5qNFMDNk</u>
- 2. <u>https://www.youtube.com/watch?v=wwN3mJ-b4FYReasoning Logical Venn</u> <u>Diagrams (tutorialspoint.com)</u>